A printed circuit board, or PCB, is used to mechanically support and electrically connect electronic components using conductive pathways, tracks or signal traces etched from copper sheets laminated onto a non-conductive substrate. It is also referred to as printed wiring board (PWB) or etched wiring board. Printed circuit boards are used in virtually all but the simplest commercially produced electronic devices.
A PCB populated with electronic components is called a printed circuit assembly (PCA), printed circuit board assembly or PCB Assembly (PCBA). In informal use the term "PCB" is used both for bare and assembled boards, the context clarifying the meaning.
Alternatives to PCBs include wire wrap and point-to-point construction. PCBs must initially be designed and laid out, but become cheaper, faster to make, and potentially more reliable for high-volume production
since production and soldering of PCBs can be automated. Much of the
electronics industry's PCB design, assembly, and quality control needs
are set by standards published by the IPC organization.
Development of the methods used in modern printed circuit boards
started early in the 20th century. In 1903, a German inventor, Albert
Hanson, described flat foil conductors laminated to an insulating board,
in multiple layers. Thomas Edison
experimented with chemical methods of plating conductors onto linen
paper in 1904. Arthur Berry in 1913 patented a print-and-etch method in
Britain, and in the United States Max Schoop obtained a patent[1]
to flame-spray metal onto a board through a patterned mask. Charles
Durcase in 1927 patented a method of electroplating circuit patterns.[2]
The Austrian engineer Paul Eisler invented the printed circuit while working in England around 1936 as part of a radio set. Around 1943 the USA began to use the technology on a large scale to make proximity fuses for use in World War II.[2]
After the war, in 1948, the USA released the invention for commercial
use. Printed circuits did not become commonplace in consumer electronics
until the mid-1950s, after the Auto-Sembly process was developed by the United States Army.
Before printed circuits (and for a while after their invention), point-to-point construction was used. For prototypes, or small production runs, wire wrap or turret board can be more efficient. Predating the printed circuit invention, and similar in spirit, was John Sargrove's 1936–1947 Electronic Circuit Making Equipment (ECME) which sprayed metal onto a Bakelite plastic board. The ECME could produce 3 radios per minute.
During World War II, the development of the anti-aircraft proximity fuse
required an electronic circuit that could withstand being fired from a
gun, and could be produced in quantity. The Centralab Division of Globe
Union submitted a proposal which met the requirements: a ceramic plate
would be screenprinted with metallic paint for conductors and carbon material for resistors, with ceramic disc capacitors and subminiature vacuum tubes soldered in place.[3]
The technique proved viable, and the resulting patent on the process,
which was classified by the U.S. Army, was assigned to Globe Union. It
was not until 1984 that the Institute of Electrical and Electronics
Engineers (IEEE) awarded Mr. Harry W. Rubinstein, the former head of
Globe Union's Centralab Division, its coveted Cledo Brunetti Award for
early key contributions to the development of printed components and
conductors on a common insulating substrate.[4]
As well, Mr. Rubinstein was honored in 1984 by his alma mater, the
University of Wisconsin-Madison, for his innovations in the technology
of printed electronic circuits and the fabrication of capacitors.[5]
Originally, every electronic component had wire leads, and the PCB
had holes drilled for each wire of each component. The components' leads
were then passed through the holes and soldered to the PCB trace. This method of assembly is called through-hole construction. In 1949, Moe Abramson and Stanislaus F. Danko of the United States Army Signal Corps developed the Auto-Sembly process in which component leads were inserted into a copper foil interconnection pattern and dip soldered. The patent they obtained in 1956 was assigned to the U.S. Army.[6]
With the development of board lamination and etching techniques, this
concept evolved into the standard printed circuit board fabrication
process in use today. Soldering could be done automatically by passing
the board over a ripple, or wave, of molten solder in a wave-soldering
machine. However, the wires and holes are wasteful since drilling holes
is expensive and the protruding wires are merely cut off.
From the 1980s small surface mount
parts have been used increasingly instead of through-hole components;
this has led to smaller boards for a given functionality and lower
production costs, but with some additional difficulty in servicing
faulty boards.
Materials
Excluding exotic products using special materials or processes, all
printed circuit boards manufactured today can be built using the
following four items which are usually purchased from manufacturers:
- Laminates
- Copper-clad laminates
- Resin impregnated B-stage cloth (Pre-preg)
- Copper foil
Laminates
Laminates are manufactured by curing under pressure and temperature layers of cloth or paper with thermoset resin
to form an integral final piece of uniform thickness. The size can be
up to 4 by 8 feet (1.2 by 2.4 m) in width and length. Varying cloth
weaves (threads per inch), cloth thickness, and resin percentage are
used to achieve the desired final thickness and dielectric characteristics.
The cloth or fiber material used, resin material, and the cloth to
resin ratio determine the laminate's type designation (FR-4, CEM-1,
G-10, etc.) and therefore the characteristics of the laminate produced.
Important characteristics are the level to which the laminate is fire retardant, the dielectric constant (er), the loss factor (tδ), the tensile strength, the shear strength, the glass transition temperature (Tg), and the Z-axis expansion coefficient (how much the thickness changes with temperature).
There are quite a few different dielectrics that can be chosen to
provide different insulating values depending on the requirements of the
circuit. Some of these dielectrics are polytetrafluoroethylene (Teflon), FR-4, FR-1, CEM-1 or CEM-3. Well known prepreg materials used in the PCB industry are FR-2 (Phenolic cotton paper), FR-3 (Cotton paper and epoxy), FR-4
(Woven glass and epoxy), FR-5 (Woven glass and epoxy), FR-6 (Matte
glass and polyester), G-10 (Woven glass and epoxy), CEM-1 (Cotton paper
and epoxy), CEM-2 (Cotton paper and epoxy), CEM-3 (Non-woven glass and
epoxy), CEM-4 (Woven glass and epoxy), CEM-5 (Woven glass and
polyester). Thermal expansion is an important consideration especially
with ball grid array (BGA) and naked die technologies, and glass fiber offers the best dimensional stability.
FR-4 is by far the most common material used today. The board with copper on it is called "copper-clad laminate".
Copper foil thickness can be specified in ounces per square foot or
micrometres. One ounce per square foot is 1.344 mils or 34 micrometres.
Patterning (etching)
The majority of printed circuit boards today are made from purchased
laminate material with copper already applied to both sides. The
unwanted copper is removed by various methods leaving only the desired
copper traces, this is called subtractive. In an additive method, traces
are electroplated
onto a bare substrate using a complex process with many steps. The
advantage of the additive method is less pollution of the environment.
The method chosen for PCB manufacture depends on the desired number of
boards to be produced. Double-sided boards or multi-layer boards use
plated-through holes, called vias, to connect traces on different layers of the PWB.
Large volume
- Silk screen printing–the main commercial method.
- Photographic methods–used when fine linewidths are required.
Small volume
- Print onto transparent film and use as photomask along with photo-sensitized boards. (i.e., pre-sensitized boards), then etch. (Alternatively, use a film photoplotter).
- Laser resist ablation: Spray black paint onto copper clad laminate, place into CNC laser plotter. The laser raster-scans the PCB and ablates (vaporizes) the paint where no resist is wanted. Etch. (Note: laser copper ablation is rarely used and is considered experimental.[clarification needed])
- Use a CNC-mill with a spade-shaped (i.e., a flat-ended cone) cutter or miniature end-mill to rout away the undesired copper, leaving only the traces.
Hobbyist
- Laser-printed resist: Laser-print onto transparency film, heat-transfer with an iron or modified laminator onto bare laminate, touch up with a marker, then etch.
- Vinyl film and resist, non-washable marker, some other methods. Labor-intensive, only suitable for single boards.
Subtractive processes
Subtractive methods, that remove copper from an entirely copper-coated board, used for the production of printed circuit boards:
- Silk screen printing uses etch-resistant inks to protect the copper foil. Subsequent etching removes the unwanted copper. Alternatively, the ink may be conductive, printed on a blank (non-conductive) board. The latter technique is also used in the manufacture of hybrid circuits.
- Photoengraving uses a photomask and developer to selectively remove a photoresist coating. The remaining photoresist protects the copper foil. Subsequent etching removes the unwanted copper. The photomask is usually prepared with a photoplotter from data produced by a technician using CAM, or computer-aided manufacturing software. Laser-printed transparencies are typically employed for phototools; however, direct laser imaging techniques are being employed to replace phototools for high-resolution requirements.
- PCB milling uses a two or three-axis mechanical milling system to mill away the copper foil from the substrate. A PCB milling machine (referred to as a 'PCB Prototyper') operates in a similar way to a plotter, receiving commands from the host software that control the position of the milling head in the x, y, and (if relevant) z axis. Data to drive the Prototyper is extracted from files generated in PCB design software and stored in HPGL or Gerber file format.
Additive processes
Additive processes adds desired copper traces to an insulating
substrate. In the full additive process the bare laminate is covered
with a photosensitive film which is imaged (exposed to light though a
mask and then developed which removes the unexposed film). The exposed
areas are sensitized in a chemical bath, usually containing palladium
and similar to that used for through hole plating which makes the
exposed area capable of bonding metal ions. The laminate is then plated
with copper in the sensitized areas. When the mask is stripped, you have
a finished PCB.
The most common is the "semi-additive" process: the unpatterned board
has a thin layer of copper already on it. A reverse mask is then
applied. (Unlike a subtractive process mask, this mask exposes those
parts of the substrate that will eventually become the traces.)
Additional copper is then plated onto the board in the unmasked areas;
copper may be plated to any desired weight. Tin-lead or other surface
platings are then applied. The mask is stripped away and a brief etching
step removes the now-exposed bare original copper laminate from the
board, isolating the individual traces. Some single-sided boards which
have plated-through holes are made in this way. General Electric
made consumer radio sets in the late 1960s using additive boards. In
1977 Dr.J.F.Mansfeld (N.V. Philips Gloeilampenfabrieken) presented the
PD-R process (Physical Development by Reduction) in a speech at the
Hotel International Zurich.[citation needed]
The additive process is commonly used for multi-layer boards as it facilitates the plating-through of the holes to produce conductive vias in the circuit board.
Circuit properties of the PCB
Each trace consists of a flat, narrow part of the copper
foil that remains after etching. The resistance, determined by width
and thickness, of the traces must be sufficiently low for the current
the conductor will carry. Power and ground traces may need to be wider
than signal traces. In a multi-layer board one entire layer may be
mostly solid copper to act as a ground plane for shielding and power return. For microwave circuits, transmission lines can be laid out in the form of stripline and microstrip with carefully controlled dimensions to assure a consistent impedance. In radio-frequency and fast switching circuits the inductance and capacitance
of the printed circuit board conductors become significant circuit
elements, usually undesired; but they can be used as a deliberate part
of the circuit design, obviating the need for additional discrete
components.
Chemical etching
Chemical etching
is usually done with ammonium persulfate or ferric chloride. For PTH
(plated-through holes), additional steps of electroless deposition are
done after the holes are drilled, then copper is electroplated to build
up the thickness, the boards are screened, and plated with tin/lead. The
tin/lead becomes the resist leaving the bare copper to be etched away.
The simplest method, used for small-scale production and often by
hobbyists, is immersion etching, in which the board is submerged in
etching solution such as ferric chloride. Compared with methods used for
mass production, the etching time is long. Heat and agitation can be
applied to the bath to speed the etching rate. In bubble etching, air is
passed through the etchant bath to agitate the solution and speed up
etching. Splash etching uses a motor-driven paddle to splash boards with
etchant; the process has become commercially obsolete since it is not
as fast as spray etching. In spray etching, the etchant solution is
distributed over the boards by nozzles, and recirculated by pumps.
Adjustment of the nozzle pattern, flow rate, temperature, and etchant
composition gives predictable control of etching rates and high
production rates.[9]
As more copper is consumed from the boards, the etchant becomes
saturated and less effective; different etchants have different
capacities for copper, with some as high as 150 grams of copper per
litre of solution. In commercial use, etchants can be regenerated to
restore their activity, and the dissolved copper recovered and sold.
Small-scale etching requires attention to disposal of used etchant,
which is corrosive and toxic due to its metal content.
The etchant removes copper on all surfaces exposed by the resist.
"Undercut" occurs when etchant attacks the thin edge of copper under the
resist; this can reduce conductor widths and cause open-circuits.
Careful control of etch time is required to prevent undercut. Where
metallic plating is used as a resist, it can "overhang" which can cause
short-circuits between adjacent traces when closely spaced. Overhang can
be removed by wire-brushing the board after etching.[9]
Lamination
"Multi layer" printed circuit boards have trace layers inside the
board. One way to make a 4-layer PCB is to use a two-sided copper-clad
laminate, etch the circuitry on both sides, then laminate to the top and
bottom prepreg and copper foil. Lamination is done by placing the stack
of materials in a press and applying pressure and heat for a period of
time. This results in an inseparable one piece product. It is then
drilled, plated, and etched again to get traces on top and bottom
layers. Finally the PCB is covered with solder mask, marking legend, and
a surface finish may be applied. Multi-layer PCB's allow for much
higher component density.
Drilling
Holes through a PCB are typically drilled with small-diameter drill bits made of solid coated tungsten carbide.
Coated tungsten carbide is recommended since many board materials are
very abrasive and drilling must be high RPM and high feed to be cost
effective. Drill bits must also remain sharp so as not to mar or tear
the traces. Drilling with high-speed-steel is simply not feasible since
the drill bits will dull quickly and thus tear the copper and ruin the
boards. The drilling is performed by automated drilling machines with placement controlled by a drill tape or drill file. These computer-generated files are also called numerically controlled drill (NCD) files or "Excellon files".
The drill file describes the location and size of each drilled hole.
These holes are often filled with annular rings (hollow rivets) to
create vias. Vias allow the electrical and thermal connection of conductors on opposite sides of the PCB.
When very small vias are required, drilling with mechanical bits is
costly because of high rates of wear and breakage. In this case, the
vias may be evaporated by lasers. Laser-drilled vias typically have an inferior surface finish inside the hole. These holes are called micro vias.
It is also possible with controlled-depth drilling, laser
drilling, or by pre-drilling the individual sheets of the PCB before
lamination, to produce holes that connect only some of the copper
layers, rather than passing through the entire board. These holes are
called blind vias when they connect an internal copper layer to an outer layer, or buried vias when they connect two or more internal copper layers and no outer layers.
The hole walls for boards with 2 or more layers can be made conductive and then electroplated with copper to form plated-through holes.[10]
These holes electrically connect the conducting layers of the PCB. For
multilayer boards, those with 3 layers or more, drilling typically
produces a smear of the high temperature decomposition products
of bonding agent in the laminate system. Before the holes can be plated
through, this smear must be removed by a chemical de-smear process, or by plasma-etch.
The de-smear process ensures that a good connection is made to the
copper layers when the hole is plated through. On high reliability
boards a process called etch-back is performed chemically with a
potassium permanganate based etchant or plasma.[11]
The etch-back removes resin and the glass fibers so that the copper
layers extend into the hole and as the hole is plated become integral
with the deposited copper.
Exposed conductor plating and coating
PCBs[12] are plated with solder, tin, or gold over nickel as a resist for etching away the unneeded underlying copper.[13]
After PCBs are etched and then rinsed with water, the soldermask is
applied, and then any exposed copper is coated with solder, nickel/gold,
or some other anti-corrosion coating.[14][15]
Matte solder is usually fused to provide a better bonding surface or
stripped to bare copper. Treatments, such as benzimidazolethiol, prevent
surface oxidation of bare copper. The places to which components will
be mounted are typically plated, because untreated bare copper oxidizes
quickly, and therefore is not readily solderable. Traditionally, any
exposed copper was coated with solder by hot air solder levelling (HASL). The HASL finish prevents oxidation from the underlying copper, thereby guaranteeing a solderable surface.[16] This solder was a tin-lead alloy, however new solder compounds are now used to achieve compliance with the RoHS directive in the EU
and US, which restricts the use of lead. One of these lead-free
compounds is SN100CL, made up of 99.3% tin, 0.7% copper, 0.05% nickel,
and a nominal of 60ppm germanium.
It is important to use solder compatible with both the PCB and the
parts used. An example is Ball Grid Array (BGA) using tin-lead solder
balls for connections losing their balls on bare copper traces or using
lead-free solder paste.
Other platings used are OSP (organic surface protectant), immersion silver (IAg), immersion tin, electroless nickel with immersion gold coating (ENIG), and direct gold plating (over nickel). Edge connectors, placed along one edge of some boards, are often nickel plated then gold plated. Another coating consideration is rapid diffusion of coating metal into Tin solder. Tin forms intermetallics such as Cu5Sn6 and Ag3Cu that dissolve into the Tin liquidus or solidus(@50C), stripping surface coating or leaving voids.
Electrochemical migration (ECM) is the growth of conductive
metal filaments on or in a printed circuit board (PCB) under the
influence of a DC voltage bias.[17][18]
Silver, zinc, and aluminum are known to grow whiskers under the
influence of an electric field. Silver also grows conducting surface
paths in the presence of halide and other ions, making it a poor choice
for electronics use. Tin will grow "whiskers" due to tension in the
plated surface. Tin-Lead or Solder plating also grows whiskers, only
reduced by the percentage Tin replaced. Reflow to melt solder or tin
plate to relieve surface stress lowers whisker incidence. Another
coating issue is tin pest, the transformation of tin to a powdery allotrope at low temperature.[19]
Solder resist
Areas that should not be soldered may be covered with "solder resist"
(solder mask). One of the most common solder resists used today is
called LPI (liquid photoimageable).[20]
A photo sensitive coating is applied to the surface of the PWB, then
exposed to light through the solder mask image film, and finally
developed where the unexposed areas are washed away. Dry film solder
mask is similar to the dry film used to image the PWB for plating or
etching. After being laminated to the PWB surface it is imaged and
develop as LPI. Once common but no longer commonly used because of its
low accuracy and resolution is to screen print epoxy ink. Solder resist
also provides protection from the environment.
Silkscreen
Line art and text may be printed onto the outer surfaces of a PCB usually by screen printing
epoxy ink in a contrasting color, but can also be done with LPI or dry
film like the solder resist. When space permits, the legend can indicate
component designators, switch setting requirements, test points, and other features helpful in assembling, testing, and servicing the circuit board.
Some digital printing solutions are used instead of screen printing.
This technology allows printing variable data onto the PCB, including
individual serial numbers as text and bar code.
Test
Unpopulated boards may be subjected to a bare-board test where each circuit connection (as defined in a netlist) is verified as correct on the finished board. For high-volume production, a bed of nails tester, a fixture or a rigid needle adapter is used to make contact with copper lands or holes on one or both sides of the board to facilitate testing. A computer will instruct
the electrical test unit to apply a small voltage to each contact point
on the bed-of-nails as required, and verify that such voltage appears
at other appropriate contact points. A "short" on a board would be a
connection where there should not be one; an "open" is between two
points that should be connected but are not. For small- or medium-volume
boards, flying probe and flying-grid
testers use moving test heads to make contact with the
copper/silver/gold/solder lands or holes to verify the electrical
connectivity of the board under test. Another method for testing is industrial CT scanning,
which can generate a 3D rendering of the board along with 2D image
slices and can show details such a soldered paths and connections.
Printed circuit assembly
After the printed circuit board (PCB) is completed, electronic components must be attached to form a functional printed circuit assembly,[21][22] or PCA (sometimes called a "printed circuit board assembly" PCBA). In through-hole construction, component leads are inserted in holes. In surface-mount construction, the components are placed on pads or lands
on the outer surfaces of the PCB. In both kinds of construction,
component leads are electrically and mechanically fixed to the board
with a molten metal solder.
There are a variety of soldering techniques used to attach components to a PCB. High volume production is usually done with SMT placement machine
and bulk wave soldering or reflow ovens, but skilled technicians are
able to solder very tiny parts (for instance 0201 packages which are
0.02 in. by 0.01 in.)[23] by hand under a microscope, using tweezers and a fine tip soldering iron for small volume prototypes. Some parts may be extremely difficult to solder by hand, such as BGA packages.
Often, through-hole and surface-mount construction must be combined
in a single assembly because some required components are available only
in surface-mount packages, while others are available only in
through-hole packages. Another reason to use both methods is that
through-hole mounting can provide needed strength for components likely
to endure physical stress, while components that are expected to go
untouched will take up less space using surface-mount techniques.
After the board has been populated it may be tested in a variety of ways:
- While the power is off, visual inspection, automated optical inspection. JEDEC guidelines for PCB component placement, soldering, and inspection are commonly used to maintain quality control in this stage of PCB manufacturing.
- While the power is off, analog signature analysis, power-off testing.
- While the power is on, in-circuit test, where physical measurements (i.e. voltage, frequency) can be done.
- While the power is on, functional test, just checking if the PCB does what it had been designed to do.
To facilitate these tests, PCBs may be designed with extra pads to
make temporary connections. Sometimes these pads must be isolated with
resistors. The in-circuit test may also exercise boundary scan
test features of some components. In-circuit test systems may also be
used to program nonvolatile memory components on the board.
In boundary scan testing, test circuits integrated into various ICs
on the board form temporary connections between the PCB traces to test
that the ICs are mounted correctly. Boundary scan testing requires that
all the ICs to be tested use a standard test configuration procedure,
the most common one being the Joint Test Action Group (JTAG) standard. The JTAG
test architecture provides a means to test interconnects between
integrated circuits on a board without using physical test probes. JTAG
tool vendors provide various types of stimulus and sophisticated
algorithms, not only to detect the failing nets, but also to isolate the
faults to specific nets, devices, and pins.[24]
When boards fail the test, technicians may desolder and replace failed components, a task known as rework.
Protection and packaging
PCBs intended for extreme environments often have a conformal coating,
which is applied by dipping or spraying after the components have been
soldered. The coat prevents corrosion and leakage currents or shorting
due to condensation. The earliest conformal coats were wax;
modern conformal coats are usually dips of dilute solutions of silicone
rubber, polyurethane, acrylic, or epoxy. Another technique for applying
a conformal coating is for plastic to be sputtered
onto the PCB in a vacuum chamber. The chief disadvantage of conformal
coatings is that servicing of the board is rendered extremely difficult.[25]
Many assembled PCBs are static sensitive, and therefore must be placed in antistatic bags during transport. When handling these boards, the user must be grounded (earthed).
Improper handling techniques might transmit an accumulated static
charge through the board, damaging or destroying components. Even bare
boards are sometimes static sensitive. Traces have become so fine that
it's quite possible to blow an etch off the board (or change its
characteristics) with a static charge. This is especially true on
non-traditional PCBs such as MCMs and microwave PCBs.
Design
Printed circuit board artwork generation was initially a fully manual
process done on clear mylar sheets at a scale of usually 2 or 4 times
the desired size. The schematic diagram was first converted into a
layout of components pin pads, then traces were routed to provide the
required interconnections. Pre-printed non-reproducing mylar grids
assisted in layout, and rub-on dry transfers
of common arrangements of circuit elements (pads, contact fingers,
integrated circuit profiles, and so on) helped standardize the layout.
Traces between devices were made with self-adhesive tape. The finished
layout "artwork" was then photographically reproduced on the resist
layers of the blank coated copper-clad boards.
Modern practice is less labor intensive since computers can
automatically perform many of the layout steps. The general progression
for a commercial printed circuit board design would include:
- Schematic capture through an Electronic design automation tool.
- Card dimensions and template are decided based on required circuitry and case of the PCB. Determine the fixed components and heat sinks if required.
- Deciding stack layers of the PCB. 1 to 12 layers or more depending on design complexity. Ground plane and power plane are decided. Signal planes where signals are routed are in top layer as well as internal layers.[26]
- Line impedance determination using dielectric layer thickness, routing copper thickness and trace-width. Trace separation also taken into account in case of differential signals. Microstrip, stripline or dual stripline can be used to route signals.
- Placement of the components. Thermal considerations and geometry are taken into account. Vias and lands are marked.
- Routing the signal traces. For optimal EMI performance high frequency signals are routed in internal layers between power or ground planes as power planes behave as ground for AC.
- Gerber file generation for manufacturing.
In the design of the PCB artwork, a power plane is the counterpart to the ground plane and behaves as an AC signal ground, while providing DC voltage for powering circuits mounted on the PCB. In electronic design automation (EDA)
design tools, power planes (and ground planes) are usually drawn
automatically as a negative layer, with clearances or connections to the
plane created automatically.
Copper thickness
Copper thickness of PCBs can be specified in units of length, but is often specified as weight of copper per square foot, in ounces, which is easier to measure. Each ounce of copper is approximately 1.4 mils (0.0014 inch) or 35 μm of thickness.
The printed circuit board industry defines heavy copper as layers
exceeding 3 ounces of copper, or approximately 0.0042 inches (4.2 mils,
105 μm) thick. PCB designers and fabricators often use heavy copper when
design and manufacturing circuit boards in order to increase
current-carrying capacity as well as resistance to thermal strains.
Heavy copper plated vias transfer heat to external heat sinks. IPC 2152
is a standard for determining current-carrying capacity of printed
circuit board traces.
Safety certification (US)
Safety Standard UL 796 covers component safety requirements for
printed wiring boards for use as components in devices or appliances.
Testing analyzes characteristics such as flammability, maximum operating temperature, electrical tracking, heat deflection, and direct support of live electrical parts.
"Cordwood" construction
Cordwood construction can save significant space and was often used with wire-ended components in applications where space was at a premium (such as missile guidance and telemetry systems) and in high-speed computers,
where short traces were important. In "cordwood" construction,
axial-leaded components were mounted between two parallel planes. The
components were either soldered together with jumper wire, or they were
connected to other components by thin nickel ribbon welded at right
angles onto the component leads. To avoid shorting together different
interconnection layers, thin insulating cards were placed between them.
Perforations or holes in the cards allowed component leads to project
through to the next interconnection layer. One disadvantage of this
system was that special nickel-leaded
components had to be used to allow the interconnecting welds to be
made. Additionally, components located in the interior are difficult to
replace. Some versions of cordwood construction used soldered
single-sided PCBs as the interconnection method (as pictured), allowing
the use of normal-leaded components.
Before the advent of integrated circuits,
this method allowed the highest possible component packing density;
because of this, it was used by a number of computer vendors including Control Data Corporation. The cordwood method of construction was used only rarely once semiconductor electronics and PCBs became widespread.
Multiwire boards
Multiwire is a patented technique of interconnection which uses
machine-routed insulated wires embedded in a non-conducting matrix
(often plastic resin). It was used during the 1980s and 1990s.
(Kollmorgen Technologies Corp, U.S. Patent 4,175,816
filed 1978) Multiwire is still available in 2010 through Hitachi. There
are other competitive discrete wiring technologies that have been
developed (Jumatech [2], layered sheets).
Since it was quite easy to stack interconnections (wires) inside the
embedding matrix, the approach allowed designers to forget completely
about the routing of wires (usually a time-consuming operation of PCB
design): Anywhere the designer needs a connection, the machine will draw
a wire in straight line from one location/pin to another. This led to
very short design times (no complex algorithms to use even for high
density designs) as well as reduced crosstalk
(which is worse when wires run parallel to each other—which almost
never happens in Multiwire), though the cost is too high to compete with
cheaper PCB technologies when large quantities are needed.
Through-hole technology
The first PCBs used through-hole technology, mounting electronic components by leads
inserted through holes on one side of the board and soldered onto
copper traces on the other side. Boards may be single-sided, with an
unplated component side, or more compact double-sided boards, with
components soldered on both sides. Horizontal installation of
through-hole parts with two axial leads (e.g., resistors, capacitors,
and diodes) is done by bending the leads 90 degrees in the same
direction, inserting the part in the board (often bending leads located
on the back of the board in opposite directions to improve the part's
mechanical strength), soldering the leads, and trimming off the ends.
Leads may be soldered either manually or by a wave soldering machine.[27]
Through-hole PCB technology almost completely replaced earlier electronics assembly techniques such as point-to-point construction. From the second generation of computers in the 1950s until surface-mount technology became popular in the late 1980s, every component on a typical PCB was a through-hole component.
Through-hole manufacture adds to board cost by requiring many holes
to be drilled accurately, and limits the available routing area for signal traces
on layers immediately below the top layer on multilayer boards since
the holes must pass through all layers to the opposite side. Once
surface-mounting came into use, small-sized SMD components were used
where possible, with through-hole mounting only of components unsuitably
large for surface-mounting due to power requirements or mechanical
limitations, or subject to mechanical stress which might damage the PCB.
No comments:
Post a Comment